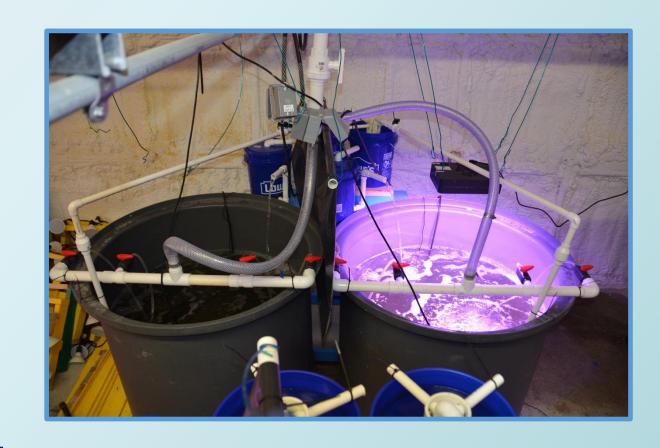
Effects of LED lighting on Pacific white shrimp performance and water quality in intensive RAS

Leo J. Fleckenstein* and Andrew J. Ray

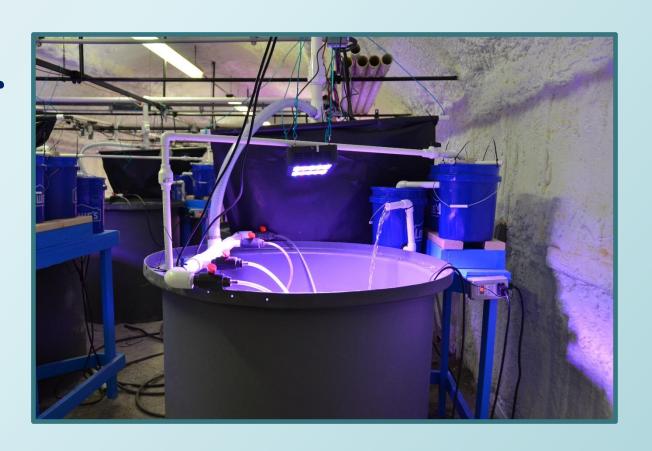
leo.fleckenstein@kysu.edu Research Assistant, Division of Aquaculture Kentucky State University Land Grant Program

COLLEGE OF
AGRICULTURE,
FOOD SCIENCE, AND
SUSTAINABLE SYSTEMS

United States Department of Agriculture National Institute of Food and Agriculture


Recirculating Systems

- -Lower water use/waste discharge
- -Improved biosecurity/escape risk
- -Temperature control
- -Indoor, year-round production
 - -Land locked areas
- -Higher animal density
- -Products near consumer markets
- -Product consistency


System Design

- -"Hybrid" system design
- -Limit/control solids removal
- -Allow biofloc to form in water
- -Use external biofilter to stabilize nitrification
- -Chemoautotrophic based bacterial community

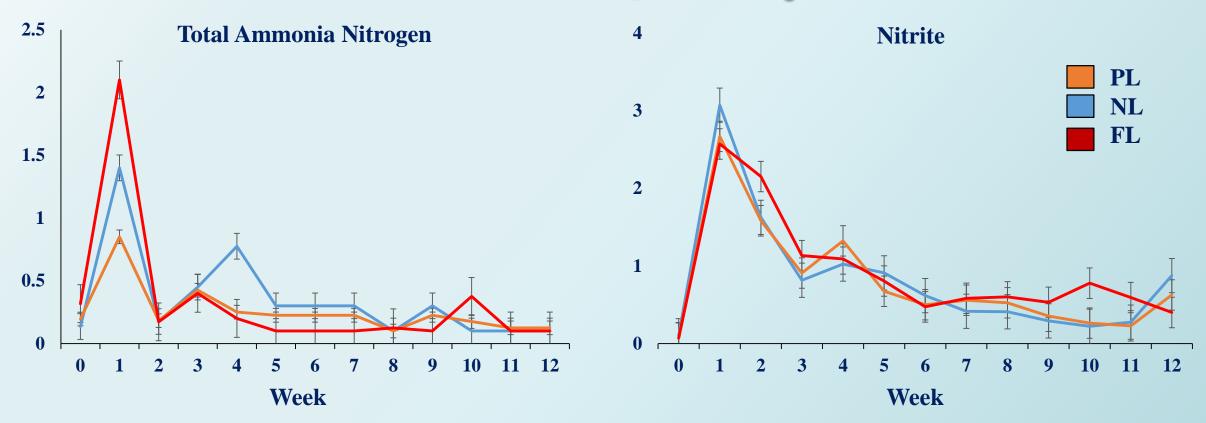
System Design

- -1 m³ tanks
- -Settling chamber (19L)
- -Moving Bed Bio-Reactor (MBBR, 19L, 2.7m² of surface area)
- -Heavy Aeration (4 15cm airstones/system)
- -Settling Chambers drained weekly

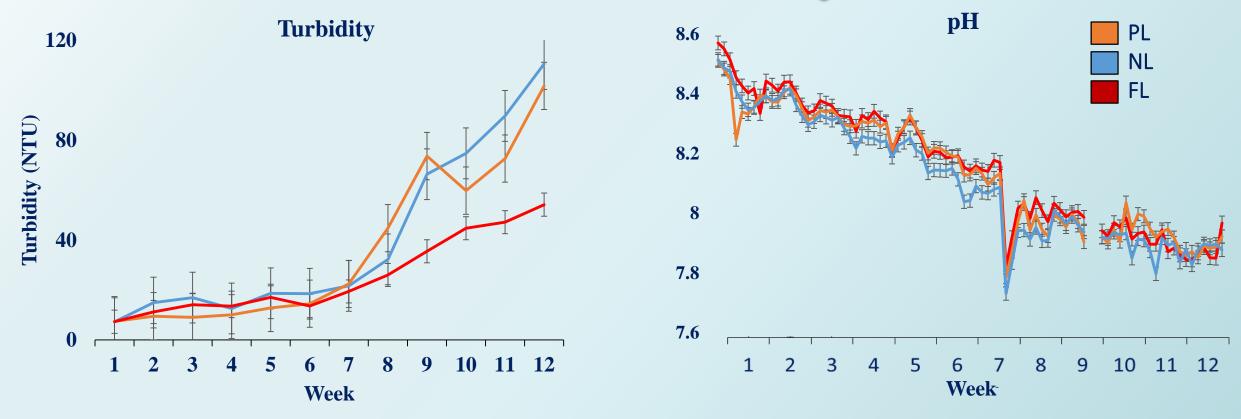
Experiment

- 1875 ft², Heated/Insulated building
- -3 Treatments
 - Full Light (FL), Partial Light (PL), No Light (NL)
 - 4 Replicate, 1m³ Tanks
 - 250 shrimp per tank
 - 1.27g average starting weight
 - 15.8 average Salinity

- Light- 300W LED Growlights
 - $PAR = 100 \mu mol m^{-2}/s^{-2}$
 - 420-480nm, 640-760nm
- FL tanks- 24 hrs light/day
- PL tanks- 12 hrs light/day
- NL tanks- No extra light
- *overhead florescent lights on during working hours, no effect on PAR


Experiment

- -Shrimp fed on 24hr belt feeders
- -Tank parameters measured twice daily
 - -Temperature, pH, dissolved oxygen, salinity
- -Water quality measured once every week
- -Total Ammonia Nitrogen, Nitrite, Nitrate, Turbidity
- -Repeated measures ANOVA for water quality data
- -Friedman Test for non-normal distribution
- -One-Way ANOVA for production data -Results considered significant when p<0.05



Water Quality

- -No significant differences in ammonia or nitrite concentrations over course of study.
- -Nitrate significantly lower in FL systems at end of study
- -FL tanks had highest initial ammonia spike during system startup

Water Quality

-pH significantly higher in FL and PL tanks compared to NL
 -NL systems required a significantly higher amount of Sodium Bicarbonate to maintain pH above 8.0
 -Turbidity significantly higher in PL and NL tanks compared to FL

Production Results

Treatment	Average Wt.(g)	Total Harvest(kg/m³)	Survival	FCR	SGR
FL	25.0 ^a	4.6a	74.1 ^a	1.37a	3.5a
PL	24.2ª	3.4b	57.2b	1.80b	3.4a
NL	19.9 ^b	3.1b	62.0ab	2.04b	3.2b

*Superscript denotes a significant difference between treatments

- -Significant differences in Production Results
- -Total Harvest significantly better in FL
- -Significant difference in Survival between FL and PL
- -FCR significantly better in FL
- -Survival likely due to effects of lights turning on and off

Shrimp Nutritional Results

Treatment	Crude Fat	n ⁻⁶ /n ⁻³ Ratio	Crude Protein	EPA	DHA	Linoleic	Linolenic
FL	0.61	1.25a	22.95 ^{ab}	9.77	8.7a	22.73a	1.51a
PL	0.74	1.26a	23.3a	9.51	8.9a	22.74a	1.41 ^b
NL	0.73	1.16 ^b	22.69b	9.84	9.44b	21.71b	1.32°

*Superscript denotes a significant difference between treatments

- -Omega-6:3 ratio significantly higher in FL and PL compared to NL
- -Crude protein significantly higher in PL vs NL
- -DHA significantly higher in NL vs FL
- -Linoleic and Linolenic higher in treatments with light
- -No difference in total fat

Biofloc Nutritional Results

Treatment	Crude Protein	Moisture	Crude Fiber	Ash
FL	5.8a	52.6	1.9ª	32.6
PL	4.6b	53	1.2 ^b	34.6
NL	4.0b	53.9	0.9b	34.9

^{*}Superscript denotes a significant difference between treatments

- -Higher levels of protein and fiber found in biofloc samples from FL treatments
- -Indication of increased algal abundance in FL systems

Summary

- -Full Light tanks significantly outperformed Partial and No Light
- -Low survival in Partial Light tanks due to shrimp jumping
- -Light impacted turbidity, possibly increased biofloc uptake by shrimp, altered biofloc composition
- -Omega-6/3 ratio in shrimp altered by lighting, possible nutritional impacts
- -24 hour lighting has a positive effect on shrimp growth
- -Further research
 - -Photoperiod effects on shrimp
 - -Light spectrum for optimum shrimp/algae production
 - -Further nutritional studies on the change in omega-6/3 ratios
 - -Cost of lighting (\$68 per m³ in this study)

Thank You!

Funding for this project was provided by the USDA National Institute of Food and Agriculture, 1890 Capacity Building Grant Program

KSU Aquaculture Webpage: http://www.ksuaquaculture.org/